

User Manual SW6000 CAA Name Sign Template.docx 1/20

SW6000 User Manual
CAA Name Sign Template

User guide for Shure SW6000 Conference Management Software

Version: 9.2 (2021)

 Shure Incorporated

User Manual SW6000 CAA Name Sign Template.docx 2/20

Table of Contents
1 Introduction 3
2 Template File 4

2.1 Object tags 4
2.2 TextBox ... 5
2.3 Comments .. 8

3 Template Command Format 9
3.1 List of commands 9
3.2 @SeatA and @SeatB commands 10
3.3 @Sign command 11
3.4 @Meeting command 11
3.5 @Booth command 11

4 Conditional Statements 12
4.1 Conditional content in Text properties

using @If 12

4.2 Conditional JSON sections using “If”
objects ...14

4.3 Comparison between “Type” : “If” and
@If ..15

5 Fonts ... 16
5.1 Supported fonts including style

availability16
5.2 MXC global languages16
5.3 Fonts in use with SW600017

5.4 Hebrew language17
6 Grey Colors 18

6.1 Color format18
6.2 Native colors supported18

7 Name Sign Specifications 19

 Shure Incorporated

 3/20

1 Introduction
This document describes the format of name sign template markup language as used in SW6000 in
‘CAA|Setup|Configuration|Name sign templates’.

The name sign template format used in SW6000 is in fact the render format directly understood by the
rendering engine in the name sign hardware. In SW6000, though, the template is split into a “Front” and
“Rear” definition for easier handling, and then merged into one before sending to a name sign.

So a template in SW6000 is in its essence a name sign render JSON file for rendering the front and rear
displays on a name sign.

On top of the basic template definition SW6000 has a markup language which is embedded into the
templates and which is evaluated by SW6000 when it renders the template for a specific name sign.

In this way e.g. participant information can be merged into the predefined name sign template before it is
sent to a name sign.

What is covered in this document is the name sign template markup language defined for the CUI
rendering of name sign content.

 Shure Incorporated

 4/20

2 Template File
This chapter describes all tags used in a template file.

The purpose of this chapter is to describe display object tags

Tag Type Description Example

"BackgroundColor" Optional
number

Color to use for global
background.
Default color: 0xFFFFFFFF

"BackgroundColor" : 0xFFFFFFFF
"Content" :
[…..

"ForegroundColor" Optional
number

Color to use for global text
rendering.
Default color: 0xFF000000

"ForegroundColor" : 0xNa000000,
"Content" :
[…..

"Rotation" Optional
number

Number describing the number
of degrees the image is to be
rotated. Current support degrees
are 0 and 180.
Default rotation is 0.

"Rotation" : 180,
"Content" :
[
…..

"Content" Optional
array

This array contains a description
of the content to be rendered.

If no content is available the
screen is cleared.

Each item in the array shall
include a unique ‘ID’.

Note: Conditional statement can
be used in the content as well.
Refer to: ‘4 Conditional
statements’

"Content" :
[
 {
 "ID" : 1,
 "Type": "TextBox",
 ………
 },
 {
 "ID" : 2,
 "Type": "TextBox",
 ……… }
]

"Invert" Optional
Boolean

Flag to signal content is to be
inverted.
Default value "false"

"Invert" : true,
"Content" :
[…..

”Language” Optional
text

Language code (Locale Id).

Specifies the SW6000 language,
from where the data is collected.

If no language code is specified
or data is not available in the
specified language, the ‘System
language’ is used.

If the resulting language code in
use, is not included in the ‘MXC
Global languages’ then the sign
will use English (US), language
code 1033.

”Language” : “1034”,
"Content" :
[

“ID” Number Identifies an object in the
content array

 Shure Incorporated

 5/20

This section describe objects which can be within a text box.

Note: A text box do not show any borders.

Tag Type Description Example

"Type" Mandatory
string

Value must be "TextBox". "Content" :
[
 {
 "ID" : 1,
 "Type": "TextBox",
 ….
 }
]

"Font" Optional
string

String containing name of font to
use for text box.

Default font is based on language
configuration, set by "Language"
tag.

Overrides the default font.

"Content" :
[
 {
 "ID" : 1,
 "Type": "TextBox",
 "Font": "Kanit",
 ….
 }
]

"Size" Optional
number

Size of the font to use.

Default size is set to 72.

"Content" :
[
 {
 "ID" : 1,
 "Type": "TextBox",
 "Size": 130,
 ….
 }
]

"X"
"Y"

Optional
number

X / Y start position of text box.

Default X / Y position is set to 0.
Position is calculated from upper
left corner of the display

"Content" :
[
 {
 "ID" : 1,
 "Type": "TextBox",
 "Size": 130,
 "X": 0,
 "Y": 0,
 ….
 }
]

"Width"
"Height"

Optional
number

Width / height of text box

Default width is set to panel max
width (1904).
Default height is set to panel max
height (464).

"Content" :
[
 {
 "ID" : 1,
 "Type": "TextBox",
 "Size": 130,
 "X": 0,
 "Y": 0,
 "Width" : 1904,
 "Height" : 464,
 ….
 }
]

 Shure Incorporated

 6/20

Tag Type Description Example

"AlignH"
"AlignV"

Optional
string

Horizontal / vertical alignment of
text within the text box.
If not set, "Center" value is used.
Valid horizontal values:
"Left"
"Right"
"Center"
Valid vertical values:
"Top"
"Bottom"
"Center"

"Content" :
[
 {
 "ID" : 1,
 "Type": "TextBox",
 "Size": 130,
 "X": 0,
 "Y": 0,
 "Width" : 1904,
 "Height" : 464,
 "AlignH": "Center",
 "AlignV": "Center",
 ….
 }
]

"Text" Mandatory
string

UTF8 Encoded text.
The string can include a text
and/or a ‘command’ from SW6000
to insert a value.

For ‘commands’ refer to ‘3.1 List
of commands

"Content" :
[
 {
 "ID" : 1,
 "Type": "TextBox",
 "Size": 130,
 "X": 0,
 "Y": 0,
 "Width" : 1904,
 "Height" : 464,
 "AlignH": "Center",
 "AlignV": "Center",
 "Text": "@SeatA(ParticipantName)" }
]

"BackgroundColor" Optional
number

Color used to render background.
Overrides global
"BackgroundColor"

 "ID" : 1,
 "Type": "TextBox",
 "BackgroundColor" : 0xFFFFFFFF

"ForegroundColor" Optional
number

Color to render text with.
Overrides global
"ForegroundColor" if used.

 "ID" : 1,
 "Type": "TextBox",
 "ForegroundColor" : 0xFF000000,

"Language" Optional
text

Language code (Locale Id).

Specifies the SW6000 language,
from where the data is collected.

If a language code is not
specified, the ‘Language‘, which
may be specified in ‘Object tag’ is
used, else the ‘System language’
is used.

If a language code is specified,
but data is not available in that
language, the ‘System language’
is used.

If the resulting language code in
use, is not included in the ‘MXC
Global languages’ then the sign
will use English (US), language
code 1033.

 "ID" : 1,
 "Type": "TextBox",
 "Language" : “1033”,

 Shure Incorporated

 7/20

Tag Type Description Example

The language code ‘default’ is also
valid.

 "ID" : 2,
 "Type": "TextBox",
 "Language" : “default”,

As the data to show is taken from
the language data in SW6000,
data in different languages, if
available, can be shown
simultaneously in the sign.

In the example, the participant
name shown on the top is the
English name and in the bottom
the Arabic name

"Content" :
[
 {
 "ID" : 1,
 "Type": "TextBox",
 "Size": 100,
 "Language" : "1033",
 "X": 0,
 "Y": 0,
 "Width" : 1904,
 "Height" : 232,
 "AlignH": "Center",
 "AlignV": "Center",
 "Text": "@SeatA(ParticipantName)"
 },
 {
 "ID" : 2,
 "Type": "TextBox",
 "Size": 100,
 "Language" : "1025",
 "X": 0,
 "Y": 232,
 "Width" : 1904,
 "Height" : 232,
 "AlignH": "Center",
 "AlignV": "Center",
 "Text": "@SeatA(ParticipantName)"
 }
]

"Style" Optional
string

Specifies style of font.
Valid values are:
"Regular"
"Italic"
"Bold"
"BoldItalic"
Default is "Regular". The font
specified by "Font" must define a
valid font for the style, or it will
fall back to "Regular"

 "ID" : 1,
 "Type": "TextBox",
 "Style" : Bold,

 Shure Incorporated

 8/20

The template format supports inserting comments using the following format:

Hex Description Example

// Used to insert comments or
‘disable’ a line.

Active until a line break.

"Content" :
[
 {
 "ID" : 1,
 "Type": "TextBox",
 // “Font”: “Kanit”,
 // This is a Thai font
 ….
 }
]

/* ….. */ Used to insert comments or
‘disable’ all in-between.

"Content" :
[
 /*{
 "ID" : 1,
 "Type": "TextBox",
 ………
 },*/
 {
 "ID" : 2,
 "Type": "TextBox",
 ……… }
]

Important: Although the current template format supports inserting comments, this is not supported in
standard json formats. This feature may be discontinued in future versions, and it is recommended to
remove comments in the templates in use.

 Shure Incorporated

 9/20

3 Template Command Format
The name sign template markup format rules:

• All commands starts with an @-sign
• Command arguments are passed in a pair of parentheses directly after the command (i.e. no white

spaces between command and arguments)
• If there are no arguments to the command, the argument parentheses can be omitted.
• If a @-character is required in the template, it must be typed in as “@@” – the template renderer

will render that sequence as a single @-character in the output.
• Commands and arguments cannot span multiple lines. Both must be on the same line in the

template.

The markup language contains the following commands used for applying content.

Command Description

@SeatA Insert value from paired sets A

@SeatB Insert value from paired seat B

@Meeting Insert value from the started meeting

@Sign Insert value from name sign configuration

@Booth Insert value from booth configuration

The following sections describes the commands in more detail.

 Shure Incorporated

 10/20

The @SeatA/B commands are used for accessing information about the seat paired with the name sign as
either A or B seat.

The command takes one argument specifying which information to fetch from the seat

Argument Data inserted when rendering Example

SeatNumber The seat number of the paired
seat

"Text": “Seat @SeatA(SeatNumber)”

“Seat 5” – providing the name sign has seat 5 as
paired seat A

ParticipantName The full name of the participant
of the paired seat

"Text": “@SeatB(ParticipantName)”

“Peter Fessler” – providing the participant Peter
Fessler is either logged in at, or assigned to, the seat
paired as seat B on the name sign

ParticipantFirstName The first name of the participant
of the paired seat

ParticipantLastName The last name of the participant
of the paired seat

ParticipantShowName The ‘show name’ of the
participant of the paired seat.
Show name is configured in
‘CAA|Setup|Meeting role’

.

ParticipantTitle The title of the participant of the
paired seat

ParticipantCustom1

ParticipantCustom2

ParticipantCustom3

ParticipantCustom4

The “User Table 1-4” value of the
participant of the paired seat

GroupName The group name of the
participant of the paired seat

GroupAbbreviation The abbreviated group name of
the participant of the paired seat

Message A message send to a participant "Text": "@SeatA(Message)"

Most values in the table above refer to “the participant of the paired seat”. This is the participant intended
to be displayed on the name sign. First and foremost, this is the participant which is logged in at the seat.
If no participant is logged in, and there is a seat assignment in the current meeting, the participant
assigned to the seat will become “the participant of the paired seat”, providing the participant is not
currently logged in at another seat.

If there is no participant for the paired seat, the participant-derived values will render as an empty string.

All text values are fetched in the system default language for all name signs unless a font or a language
code is specified.

 Shure Incorporated

 11/20

The @Sign command is used to access information about the name sign itself.

The command takes one argument specifying which information to fetch from the seat

Argument Data inserted when rendering Example

SerialNumber The serial number of the name sign "Text": “SerialNo: @Sign(SerialNumber)”

“SerialNo: 164.214.045” – providing the serial
number of the name sign is 164.214.045

SeatA Seat number of the seat paired as A seat on
the name sign

"Text": "Seat @Sign(SeatA)"

SeatB Seat number of the seat paired as B seat on
the name sign

"Text": "Seat @Sign(SeatB)"

The @Meeting command is used to access information about the active meeting.

The command takes one argument specifying which information to fetch from the seat

Argument Data inserted when rendering Example

MeetingName The name of the active meeting "Text": "@Meeting(MeetingName)"

ActiveSubject The title of the active subject "Text": "@Meeting(Active subject)"

The @Booth command is used to access information about interpreter booth.

The command takes one argument specifying which information to fetch from the booth.

Argument Data inserted when
rendering

Example

BoothLanguage The A language associated with
a booth

"Text": "@Booth(BoothNumber) -
@Booth(BoothLanguage)
(@Booth(BoothLanguageAbbreviation))"

BoothLanguageAbbreviation Abbreviation for the A language
associated with a booth

BoothNumber The booth number

BoothLanguageChannel The number of the A channel
associated with a booth

 Shure Incorporated

 12/20

4 Conditional Statements
The conditional statement can be achieved in two ways:

• Conditional content in Text properties using @If
• Conditional JSON sections using “If” objects

The following sections describes the conditional statements in details.

The name sign conditional commands used as ‘Text’ arguments:

• All commands starts with an @-sign
• Command arguments are passed in a pair of parentheses directly after the command (i.e. no white

spaces between command and arguments)
• If there are no arguments to the command, the argument parentheses can be omitted.
• If the first character after a command or command argument end parenthesis is a space, it is

trimmed out when rendering a template. This allows the output of a markup command to line up
with literal content in the template. (e.g. the template snippet “’@If(something) Yes@Else No”
would evaluate to “Yes” or “No” when rendering – without skipping a space after a command it
would yield “Yes” or “ No”, where No has a leading space, or would require empty parentheses
after @Else to be able to put “No” right after the @Else to avoid the space)

• If a @-character is required in the template, it must be typed in as “@@” – the template renderer
will render that sequence as a single @-character in the output.

• Commands and arguments cannot span multiple lines. Both must be on the same line in the
template.

 List of commands
The markup language contains the following commands

Command Description

@If Open a conditional section in the Text content

@Else Open the alternative section of a conditional section in the Text content

@EndIf Close a conditional section in the Text content

 @If...@Else...@EndIf commands
The @If, @Else and @EndIf commands exists for conditional inclusion of sections in Text property values.

Everything between an @If and its associated @Else command is rendered to the name sign by the CUI
only if the condition argument to the @If command is true. Otherwise, the section between the @Else and
its associated @EndIf command is rendered to the name sign.

The @Else command can be excluded, in which case the section between the @If and @EndIf commands
is rendered if the condition argument of the @If command is true.

@If..@Else..@EndIf constructs can be nested for complex conditional template content.

The @If command takes one of the following conditions as argument.

 Shure Incorporated

 13/20

Argument Condition is true when

SeatAHasParticipant The seat paired as name sign seat A has a participant assigned to it (i.e. a participant is to
be displayed on the name sign)

SeatBHasParticipant The seat paired as name sign seat B has a participant assigned to it (i.e. a participant is to
be displayed on the name sign)

The @Else and @EndIf commands take no arguments.

 Example using @If
The following examples includes some JSON formatting, since the @If...@Else...@EndIf command syntax
is designed to include or exclude chunks of text data in the template.

Template snippet Output

 "Text": "@If(SeatAHasParticipant) Participant A is here

@If(SeatBHasParticipant) with participant B

@EndIf

@Else

@If(SeatBHasParticipant) Participant B is here alone

@Else No one is here

@EndIf

@EndIf",

No one is here

If no participant is assigned to either
paired seat A or B.

Participant A is here

If a participant is assigned to paired
seat A and no one is assigned to paired
seat B.

Participant B is here alone

If a participant is assigned to seat B
and no one is assigned to seat A.

Participant A is here with
participant B

If both seat A and B has assigned
participants.

 Notes on white spaces
To limit the amount of data sent over the DCS LAN, the CUI will trim down the JSON of name sign
templates. To save on processing this is done before the template is pre-parsed into literal text and
markup commands.

The trimming down of the JSON involves removing all non-quoted spaces and line breaks. This will affect
how the markup language is parsed after the trimming. If, for instance, you have the construct “@EndIf
This is my text” it will be trimmed down to ”@EndIfThisIsMyText”, which will fail parsing, since there is no
markup command named @EndIfThisIsMyText.

A workaround for such a situation would be to include the optional parantheses on @EndIf. This would
result in the trimmed down “@EndIf()ThisIsMyText”, which is parsable.

 Shure Incorporated

 14/20

Command Description

If Open a conditional section in the template

Condition Specified the condition

Then Open the conditional section in the template

Else Open an optional conditional section in the template

The condition command takes the same conditions as argument as the @If command.

Condition Condition is true when

SeatAHasParticipant The seat paired as name sign seat A has a participant assigned to it (i.e. a participant is to
be displayed on the name sign)

SeatBHasParticipant The seat paired as name sign seat B has a participant assigned to it (i.e. a participant is to
be displayed on the name sign)

 Example with ’If, then, else’
"Content" :
[
 {
 "Type": "If",
 "Condition": "SeatAHasParticipant",
 "Then":
 [
 {
 "ID" : 1,
 "Type": "TextBox",
 "Size": 90,
 "X": 0,
 "Y": 0,
 "Width" : 1904,
 "Height" : 230,
 "AlignH": "Left",
 "AlignV": "Center",
 "Text": "Seat A has participant"
 }
],
 "Else":
 [
 {
 "ID" : 2,
 "Type": "TextBox",
 "Size": 90,
 "X": 0,
 "Y": 0,
 "Width" : 150,
 "Height" : 230,
 "AlignH": "Left",
 "AlignV": "Center",
 "Text": "Seat A has no participant"
 }
]
 }

]

 Shure Incorporated

 15/20

The following template examples shown the two ways of using ‘If’ to constructs the display a “<” and “>”
direction indicator if somebody is logged in at the A and B seat respectively, indicating the seating
position of the displayed participant name.

Achieved with "Type": "If" Achieved with @If … @Endif

"Content" :
[
 {
 "Type": "If",
 "Condition": "SeatBHasParticipant",
 "Then":
 [
 {
 "ID" : 1,
 "Type": "TextBox",
 "Size": 90,
 "X": 0,
 "Y": 0,
 "Width" : 1904,
 "Height" : 230,
 "AlignH": "Left",
 "AlignV": "Center",
 "Text": "< @SeatB(ParticipantName)"
 }
]

 },
 {
 "Type": "If",
 "Condition": "SeatAHasParticipant",
 "Then":
 [
 {
 "ID" : 4,
 "Type": "TextBox",
 "Size": 90,
 "Font" : "Kanit",
 "X": 0,
 "Y": 230,
 "Width" : 1904,
 "Height" : 230,
 "AlignH": "Right",
 "AlignV": "Center",
 "Text": "@SeatA(ParticipantName) >"
 }
]

 }
]

"Content" :
[
 {
 "ID" : 1,
 "Type": "TextBox",
 "Size": 90,
 "X": 0,
 "Y": 0,
 "Width" : 1904,
 "Height" : 230,
 "AlignH": "Left",
 "AlignV": "Center",
 "Text": "@If(SeatBHasParticipant)< @SeatB(ParticipantName) @EndIf",
 },
 {
 "ID" : 4,
 "Type": "TextBox",
 "Size": 90,
 "Font" : "Kanit",
 "X": 0,
 "Y": 230,
 "Width" : 1904,
 "Height" : 230,
 "AlignH": "Right",
 "AlignV": "Center",
 "Text": "@If(SeatAHasParticipant) @SeatA(ParticipantName) >@EndIf",
 }
]

 Shure Incorporated

 16/20

5 Fonts
The font sizes supported are TTF fonts and all pt sizes are valid.

If an invalid font is specified in a template, the “Roboto Condensed Regular” font will be used.

The next table shows the fonts available in the Namesign.

Font Regular Italic Bold Bold Italic
Roboto X x x x
RobotoCondensed X x x x
NotoSansThai X x
Kanit X x
NotoSansHebrew X x
NotoSansCJK X
NotoSansArabic X x
NotoNaskhArabic X x

The table shows the default font selection for the MXC global languages. Each language is defined with a
language code (locale id).

Language Language code (Locale Id) Supported by font
Arabic 1025 NotoNaskhArabic
Basque 1069 RobotoCondensed
Chinese Simple 2052 NotoSansCJK
Chinese Traditional 1028 NotoSansCJK
Catalan 1027 RobotoCondensed
Dutch 1043 RobotoCondensed
English 1033 RobotoCondensed
French 1036 RobotoCondensed
German 1031 RobotoCondensed
Indonesian 1057 RobotoCondensed
Italian 1040 RobotoCondensed
Japanese 1041 NotoSansCJK
Korean 1042 NotoSansCJK
Lithuanian 1063 RobotoCondensed
Portuguese 1046 RobotoCondensed
Russian 1049 RobotoCondensed
Spanish 3082 RobotoCondensed
Thai 1054 Kanit
Turkish 1055 RobotoCondensed

 Shure Incorporated

 17/20

When the MXCSIGN is used with SW6000 and the language(s) used in SW6000 is not supported in the
MXC global languages, the MXCSIGN will use the Language code (Locale Id) 1033 (RobotoCondensed
font).

It is therefore not needed to change the ‘Language’ in any of the default templates in SW6000 if the used
language is a language supported in the RobotoCondensed font.

The Roboto and RobotoCondensed fonts support Latin, Greek and Cyrillic script and the following
characters are supported:

" # $ % & ' () * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W
X Y Z [\] ^ _ ` a b c d e f g h i j k l m n o p q r s t u v w x y z {|} ~ ¡ ¢ £ ¤ ¥ ¦ § ¨ © ª « ¬ ® ¯ ° ± ² ³
´ µ ¶ · ¸ ¹ º » ¼ ½ ¾ ¿ À Á Â Ã Ä Å Æ Ç È É Ê Ë Ì Í Î Ï Ð Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û Ü Ý Þ ß à á â ã ä å æ ç
è é ê ë ì í î ï ð ñ ò ó ô õ ö ÷ ø ù ú û ü ý þ ÿ Ā ā Ă ă Ą ą Ć ć Ĉ ĉ Ċ ċ Č č Ď ď Đ đ Ē ē Ĕ ĕ Ė ė Ę ę Ě ě Ĝ ĝ Ğ ğ
Ġ ġ Ģ ģ Ĥ ĥ Ħ ħ Ĩ ĩ Ī ī Ĭ ĭ Į į İ ı Ĳ ĳ Ĵ ĵ Ķ ķ ĸ Ĺ ĺ Ļ ļ Ľ ľ Ŀ ŀ Ł ł Ń ń Ņ ņ Ň ň ŉ Ŋ ŋ Ō ō Ŏ ŏ Ő ő Œ œ Ŕ ŕ Ŗ ŗ Ř ř
Ś ś Ŝ ŝ Ş ş Š š Ţ ţ Ť ť Ŧ ŧ Ũ ũ Ū ū Ŭ ŭ Ů ů Ű ű Ų ų Ŵ ŵ Ŷ ŷ Ÿ Ź ź Ż ż Ž ž ſ ƒ Ơ ơ Ư ư ǰ Ǻ ǻ Ǽ ǽ Ǿ ǿ Ș ș ȷ ʼ ˆ
ˇ ˘ ˙ ˚ ˛ ˜ ˝ ˳ ̀ ́ ̃ ̉ ̏ ̣ ΄ ΅ Ά · Έ Ή Ί Ό Ύ Ώ ΐ Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω Ϊ Ϋ ά έ ή ί ΰ α β
γ δ ε ζ η θ ι κ λ μ ν ξ ο π ρ ς σ τ υ φ χ ψ ω ϊ ϋ ό ύ ώ ϑ ϒ ϖ Ѐ Ё Ђ Ѓ Є Ѕ І Ї Ј Љ Њ Ћ Ќ Ѝ Ў Џ А Б В Г Д Е Ж
З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я а б в г д е ж з и й к л м н о п р с т у ф х ц ч ш щ
ъ ы ь э ю я ѐ ё ђ ѓ є ѕ і ї ј љ њ ћ ќ ѝ ў џ Ѡ ѡ Ѣ ѣ Ѥ ѥ Ѧ ѧ Ѩ ѩ Ѫ ѫ Ѭ ѭ Ѯ ѯ Ѱ ѱ Ѳ ѳ Ѵ ѵ Ѷ ѷ Ѹ ѹ Ѻ ѻ Ѽ ѽ Ѿ
ѿ Ҁ ҁ ҂ ҃ ҄ ̔ ̓ ҈ ҉ Ҋ ҋ Ҍ ҍ Ҏ ҏ Ґ ґ Ғ ғ Ҕ ҕ Җ җ Ҙ ҙ Қ қ Ҝ ҝ Ҟ ҟ Ҡ ҡ Ң ң Ҥ ҥ Ҧ ҧ Ҩ ҩ Ҫ ҫ Ҭ ҭ Ү ү Ұ ұ Ҳ ҳ Ҵ ҵ Ҷ ҷ Ҹ ҹ
Һ һ Ҽ ҽ Ҿ ҿ Ӏ Ӂ ӂ Ӄ ӄ Ӆ ӆ Ӈ ӈ Ӊ ӊ Ӌ ӌ Ӎ ӎ ӏ Ӑ ӑ Ӓ ӓ Ӕ ӕ Ӗ ӗ Ә ә Ӛ ӛ Ӝ ӝ Ӟ ӟ Ӡ ӡ Ӣ ӣ Ӥ ӥ Ӧ ӧ Ө ө Ӫ ӫ Ӭ ӭ Ӯ ӯ Ӱ ӱ Ӳ
ӳ Ӵ ӵ Ӷ ӷ Ӹ ӹ Ӻ ӻ Ӽ ӽ Ӿ ӿ Ԁ ԁ Ԃ ԃ Ԅ ԅ Ԇ ԇ Ԉ ԉ Ԋ ԋ Ԍ ԍ Ԏ ԏ Ԑ ԑ Ԓ ԓ Ḁ ḁ Ḿ ḿ Ẁ ẁ Ẃ ẃ Ẅ ẅ Ạ ạ Ả ả Ấ ấ Ầ ầ Ẩ ẩ Ẫ
ẫ Ậ ậ Ắ ắ Ằ ằ Ẳ ẳ Ẵ ẵ Ặ ặ Ẹ ẹ Ẻ ẻ Ẽ ẽ Ế ế Ề ề Ể ể Ễ ễ Ệ ệ Ỉ ỉ Ị ị Ọ ọ Ỏ ỏ Ố ố Ồ ồ Ổ ổ Ỗ ỗ Ộ ộ Ớ ớ Ờ ờ Ở ở Ỡ
ỡ Ợ ợ Ụ ụ Ủ ủ Ứ ứ Ừ ừ Ử ử Ữ ữ Ự ự Ỳ ỳ Ỵ ỵ Ỷ ỷ Ỹ ỹ Ὅ – — ― ‗ ‘ ’ ‚ ‛ “ ” „ † ‡ • ‥ … ‰ ′ ″ ‹ › ‼ ⁄ ⁴ ⁿ ₣ ₤ ₧ ₫ €
℅ ℓ № ™ ℮ ⅛ ⅜ ⅝ ⅞ ∂ ∏ ∑ − √ ∞ ∫ ≠ ≤ ≥ ◊ fi fl ffi ffl

 Supported languages in Roboto and RobotoCondensed
The following languages are fully or partly supported in Roboto and RobotoCondensed fonts:

Afrikaans
Albanian
Bashkir
Basque
Belarusian
Breton
Bulgarian
Catalan
Chinese pinyin
Corsican
Cyrillic
Czech
Danish
Dutch

English
Esperanto
Estonian
Faroese
Finnish
French
Galician
German
Greek
Hungarian
Icelandic
Indonesian
Internat. phonetic
Irish

Irish
Italian
Kayah li
Kazakh
Kurdish
Latin
Leonese
Luxembourgish
Malay
Manx
Norwegian
Occitan
Polish
Portuguese

Rhaeto-Romanic
Russian
Scots
Scottish Gaelic
Southern Sami
Spanish
Swahili
Swedish
Tagalog
Tatar
Turkish
Ukrainian
Walloon
Welsh

Hebrew is not supported in the MXC global language, but Hebrew is supported in the MXCSIGN:

Language Language code (Locale Id) Supported by font
Hebrew 1037 NotoSansHebrew

To use Hebrew, the Hebrew language has to be specified in the Object tags or in a TextBox in the
template.

 Shure Incorporated

 18/20

6 Grey Colors

The name sign support 16 levels of grey colors. The color format used is 0xAARRGGBB.

AA – 8bit Alpha channel.
RR – 8bit Red channel.
GG – 8bit Green channel.
BB – 8bit Blue channel

Any color selected that do not support native colors will be converted to nearest grey and dithered.

The JSON only accepts the Hex [A,R,G,B] and Decimal formats.

Hex [A,R,G,B] Decimal List

0xFF000000 4278190080 [255,0,0,0]

0xFF111111 4279308561 [255,17,17,17]

0xFF222222 4280427042 [255,34,34,34]

0xFF333333 4281545523 [255,51,51,51]

0xFF444444 4282664004 [255,68,68,68]

0xFF555555 4283782485 [255,85,85,85]

0xFF666666 4284900966 [255,102,102,102]

0xFF777777 4286019447 [255,119,119,119]

0xFF888888 4287137928 [255,136,136,136]

0xFF999999 4288256409 [255,153,153,153]

0xFFAAAAAA 4289374890 [255,170,170,170]

0xFFBBBBBB 4290493371 [255,187,187,187]

0xFFCCCCCC 4291611852 [255,204,204,204]

0xFFDDDDDD 4292730333 [255,221,221,221]

0xFFEEEEEE 4293848814 [255,238,238,238]

 Shure Incorporated

 19/20

7 Name Sign Specifications
The MXCSIGN has the following specifications:

Image Size 1904 x 464 pixels
Screen Dimensions 380mm x 100 mm
Thickness 9mm
Width x Height 402mm x 113mm

The positions and size of an item are specified in pixels. The position of an item is counted from upper left
corner of the display.

Font sizes are specified in pt.

www.shure.com

United States, Canada, Latin
America, Caribbean:
Shure Incorporated
5800 West Touhy Avenue
Niles, IL 60714-4608
USA

Phone: +1 847 600 2000
Fax: +1 847 600 1212 (USA)
Fax: +1 847 600 6446
Email: info@shure.com

Europe, Middle East, Africa:

Shure Europe Gmbh
Jakob-Dieffenbacher-Str. 12
75031 Eppingen
Germany

Phone: +49 (0) 7262-9249-100
Fax: +49 (0) 7262-9249-114
Email: info@shure.de

Asia, Pacific:

Shure Asia Limited
22/F, 625 King's Road
North Point, Island East,
Hong Kong

Phone: (+852) 2893-4290
Fax: (+852) 2893-4055
Email: info@shure.com.hk

	1 Introduction
	2 Template File
	2.1 Object tags
	2.2 TextBox
	2.3 Comments

	3 Template Command Format
	3.1 List of commands
	3.2 @SeatA and @SeatB commands
	3.3 @Sign command
	3.4 @Meeting command
	3.5 @Booth command

	4 Conditional Statements
	4.1 Conditional content in Text properties using @If
	4.1.1 List of commands
	4.1.2 @If...@Else...@EndIf commands
	4.1.3 Example using @If
	4.1.4 Notes on white spaces

	4.2 Conditional JSON sections using “If” objects
	4.2.1 Example with ’If, then, else’

	4.3 Comparison between “Type” : “If” and @If

	5 Fonts
	5.1 Supported fonts including style availability
	5.2 MXC global languages
	5.3 Fonts in use with SW6000
	5.3.1 Supported languages in Roboto and RobotoCondensed

	5.4 Hebrew language

	6 Grey Colors
	6.1 Color format
	6.2 Native colors supported

	7 Name Sign Specifications

